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For this tutorial, we’re going to use a neural network with two inputs, two hidden 
neurons, and two output neurons. Additionally, the hidden and output neurons will 
include a bias. 
 
Here’s the basic structure: 

 
 
 
In order to have some numbers to work with, here are the initial weights, the biases, and 
training inputs/outputs: 
 

 
 
The goal of backpropagation is to optimize the weights so that the neural network can 
learn how to correctly map arbitrary inputs to outputs. 
 



For the rest of this tutorial we’re going to work with a single training set: given inputs 
0.05 and 0.10, we want the neural network to output 0.01 and 0.99. 
 
1. The Forward Pass 
 
To begin, lets see what the neural network currently predicts given the weights and 
biases above and inputs of 0.05 and 0.10. To do this we’ll feed those inputs forward 
though the network. 
 
We figure out the total net input to each hidden layer neuron, squash the total net input 
using an activation function (here we use the sigmoid function), then repeat the process 
with the output layer neurons. 
 
Here’s how we calculate the total net input for h1: 
 
neth1 = (w1 * i1)+ (w2 * i2)+ (b1 * 1) 
 
neth1 = (0.15 * 0.05) + (0.2 * 0.1) + (0.35 * 1) = 0.3775 
 
We then squash it using the sigmoid function to get the output of h1: 
 

𝑜𝑜𝑜𝑜𝑡𝑡ℎ1 =  
1

1 + 𝑒𝑒�−𝑛𝑛𝑛𝑛𝑡𝑡{ℎ1}�
 =  

1
1 + 𝑒𝑒{−0.3775}  =  0.593269992 

 
Carrying out the same process for h2 we get: 
 
neth2 = (w3 * i1)+ (w4 * i2)+ (b1 * 1) 
 
neth2 = (0.25 * 0.05) + (0.30 * 0.1) + (0.35 * 1) = 0.3925 
 

𝑜𝑜𝑜𝑜𝑡𝑡ℎ2 =  
1

1 + 𝑒𝑒�−𝑛𝑛𝑛𝑛𝑡𝑡{ℎ2}�
 =  

1
1 + 𝑒𝑒{−0.3925}  =  0.596884378 

 
outh2 = 0.596884378 

 
We repeat this process for the output layer neurons, using the output from the hidden 
layer neurons as inputs. 
 
Here’s the output for o1: 
 
neto1 = (w5 * outh1) + (w6 * outh2)+ (b2 * 1) 
 
neto1 = (0.4 * 0.593269992) + (0.45 * 0.596884378) + (0.6 * 1) = 1.105905967 
 

𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜1 =  
1

1 + 𝑒𝑒�−𝑛𝑛𝑛𝑛𝑡𝑡{𝑜𝑜1}�
 =  

1
1 + 𝑒𝑒{−1.105905967}  =  0.75136507 

 



And carrying out the same process for o2 we get: 
 

outo2 = 0.772928465 
 
Calculating the Total Error 
 
We can now calculate the error for each output neuron using the squared error function 
and sum them to get the total error: 
 

𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡  =  �
1
2

(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑡𝑡 −  𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡)2 

 
The 1

2
 is included so that exponent is cancelled when we differentiate later on. The result 

is eventually multiplied by a learning rate anyway so it doesn’t matter that we introduce 
a constant here. 
 
For example, the target output for o1 is 0.01 but the neural network output 0.75136507, 
therefore its error is: 
 

𝐸𝐸𝑜𝑜1 =  
1
2

(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑡𝑡𝑜𝑜1 −  𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜1)2 =  
1
2

(0.01 −  0.75136507)2 =  0.274811083 

  
Repeating this process for o2 (remembering that the target is 0.99) we get: 
 

𝐸𝐸𝑜𝑜2 =  0.023560026 
 
The total error for the neural network is the sum of these errors: 
 

𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐸𝐸01 + 𝐸𝐸02 =  0.274811083 +  0.023560026 =  0.298371109 
 
 
 
2. The Backwards Pass 
 
Our goal with backpropagation is to update each of the weights in the network so that 
they cause the actual output to be closer the target output, thereby minimizing the error 
for each output neuron and the network as a whole. 
 
Output Layer 
 
Consider w5 . We want to know how much a change in w5 affects the total error, aka 
(also known as) 𝜕𝜕𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡

𝜕𝜕𝑤𝑤5
 

 
𝜕𝜕𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡
𝜕𝜕𝑤𝑤5

 is read as “the partial derivative of Etotal with respect to w5”.  You can also say “the 
gradient with respect to w5”. 
 



By applying the chain rule we know that: 
 

𝜕𝜕𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡
𝜕𝜕𝑤𝑤5

=
𝜕𝜕𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡
𝜕𝜕𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜1

∗
𝜕𝜕𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜1
𝜕𝜕𝑛𝑛𝑒𝑒𝑡𝑡𝑜𝑜1

∗
𝜕𝜕𝑛𝑛𝑒𝑒𝑡𝑡𝑜𝑜1
𝜕𝜕𝑤𝑤5

 

 
Visually, here’s what we’re doing: 
 
 

 
 
We need to figure out each piece in this equation. 
 
First, how much does the total error change with respect to the output? 
 

𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡 =  
1
2

(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑡𝑡𝑜𝑜1 −  𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜1)2 +  
1
2

(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑡𝑡𝑜𝑜2 −  𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜2)2 

 
𝜕𝜕𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡
𝜕𝜕𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜1

= 2 ∗
1
2

(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑡𝑡𝑜𝑜1 −  𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜1)2−1 ∗ −1 + 0 

 
𝜕𝜕𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡
𝜕𝜕𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜1

= −(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑡𝑡𝑜𝑜1 −  𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜1)1 = −(0.01 −  0.75136507)  =  0.74136507 

 
 
When we take the partial derivative of the total error with respect to outo1, the quantity 
1
2

(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑡𝑡𝑜𝑜2 −  𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜2)2 becomes zero because outo1 does not affect it.  We’re taking the 
derivative of a constant which is zero. 
 
Next, how much does the outo1 change with respect to its total net input? 
 



The partial derivative of the sigmoid function is the output multiplied by 1 minus the 
output: 
 

𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜1 =  
1

1 + 𝑒𝑒−𝑛𝑛𝑛𝑛𝑡𝑡𝑜𝑜1
 

 
𝜕𝜕𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜1
𝜕𝜕𝑛𝑛𝑒𝑒𝑡𝑡𝑜𝑜1

= 𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜1(1 − 𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜1) =  0.75136507(1 −  0.75136507)  =  0.186815602 

 
Finally, how much does the total net input of o1 change with respect to w5? 
 

𝑛𝑛𝑒𝑒𝑡𝑡𝑜𝑜1 = (𝑤𝑤5 ∗ 𝑜𝑜𝑜𝑜𝑡𝑡ℎ1) + (𝑤𝑤6 ∗ 𝑜𝑜𝑜𝑜𝑡𝑡ℎ2) + (𝑏𝑏2 ∗ 1) 
 

𝜕𝜕𝑛𝑛𝑒𝑒𝑡𝑡𝑜𝑜1
𝜕𝜕𝑤𝑤5

= 1 ∗ 𝑜𝑜𝑜𝑜𝑡𝑡ℎ1 ∗ 𝑤𝑤5
(1−1) + 0 + 0 = 𝑜𝑜𝑜𝑜𝑡𝑡ℎ1 =  0.593269992 

 
Putting it all together: 
 

𝜕𝜕𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡
𝜕𝜕𝑤𝑤5

=
𝜕𝜕𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡
𝜕𝜕𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜1

∗
𝜕𝜕𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜1
𝜕𝜕𝑛𝑛𝑒𝑒𝑡𝑡𝑜𝑜1

∗
𝜕𝜕𝑛𝑛𝑒𝑒𝑡𝑡𝑜𝑜1
𝜕𝜕𝑤𝑤5

 

 
𝜕𝜕𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡
𝜕𝜕𝑤𝑤5

= 0.74136507 ∗  0.186815602 ∗  0.593269992 =  0.082167041    

 
 

𝜕𝜕𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡
𝜕𝜕𝑤𝑤5

= −(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑡𝑡𝑜𝑜1 −  𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜1) ∗ 𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜1(1 − 𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜1) ∗ 𝒐𝒐𝒐𝒐𝒐𝒐𝒉𝒉𝒉𝒉 

 
To decrease the error, we then subtract this value from the current weight (optionally 
multiplied by some learning rate, eta 𝜂𝜂 , which we’ll set to 0.5): 
 

𝑤𝑤5
+ = 𝑤𝑤5 − 𝜂𝜂

𝜕𝜕𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡
𝜕𝜕𝑤𝑤5

=  0.4 − (0.5 ∗  0.082167041)  =  0.35891648 

 
 We can repeat this process to get the new weights w6, w7, and w8: 
 

𝜕𝜕𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡
𝜕𝜕𝑤𝑤6

= −(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑡𝑡𝑜𝑜1 −  𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜1) ∗ 𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜1(1 − 𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜1) ∗ 𝒐𝒐𝒐𝒐𝒐𝒐𝒉𝒉𝒉𝒉 

𝜕𝜕𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡
𝜕𝜕𝑤𝑤6

= 0.74136507 ∗  0.186815602 ∗  0.596884378 =  0.0826676279    

𝑤𝑤6
+ = 𝑤𝑤6 − 𝜂𝜂

𝜕𝜕𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡
𝜕𝜕𝑤𝑤6

=  0.45 − (0.5 ∗  0.0826676279)  =  0.408666186 

 
 
 

𝜕𝜕𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡
𝜕𝜕𝑤𝑤7

= −(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑡𝑡𝑜𝑜2 −  𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜2) ∗ 𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜2(1 − 𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜2) ∗ 𝒐𝒐𝒐𝒐𝒐𝒐𝒉𝒉𝒉𝒉 



 
𝜕𝜕𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡
𝜕𝜕𝑤𝑤8

= −(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑡𝑡𝑜𝑜2 −  𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜2) ∗ 𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜2(1 − 𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜2) ∗ 𝒐𝒐𝒐𝒐𝒐𝒐𝒉𝒉𝒉𝒉 

 
𝑤𝑤7
+ =  0.511301270 

 
𝑤𝑤8
+ =  0.561370121 

  
We perform the actual updates in the neural network after we have the new weights 
leading into the hidden layer neurons (ie, we use the original weights, not the updated 
weights, when we continue the backpropagation algorithm below). 
 
 
Hidden Layer 
 
Next, we’ll continue the backwards pass by calculating new values for w1, w2, w3, and 
w4. 
 
Big picture, here’s what we need to figure out: 
 

𝜕𝜕𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡
𝜕𝜕𝑤𝑤1

=
𝜕𝜕𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡
𝜕𝜕𝑜𝑜𝑜𝑜𝑡𝑡ℎ1

∗
𝜕𝜕𝑜𝑜𝑜𝑜𝑡𝑡ℎ1
𝜕𝜕𝑛𝑛𝑒𝑒𝑡𝑡ℎ1

∗
𝜕𝜕𝑛𝑛𝑒𝑒𝑡𝑡ℎ1
𝜕𝜕𝑤𝑤1

 

 
Visually: 
 

 
 
 
We’re going to use a similar process as we did for the output layer, but slightly different 
to account for the fact that the output of each hidden layer neuron contributes to the 
output (and therefore error) of multiple output neurons. We know that outh1 affects 



both outo1 and outo2 therefore the  𝜕𝜕𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡
𝜕𝜕𝑜𝑜𝑜𝑜𝑡𝑡ℎ1

  needs to take into consideration its effect on 
the both output neurons: 
 

𝜕𝜕𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡
𝜕𝜕𝑜𝑜𝑜𝑜𝑡𝑡ℎ1

=
𝜕𝜕𝐸𝐸𝑜𝑜1
𝜕𝜕𝑜𝑜𝑜𝑜𝑡𝑡ℎ1

+
𝜕𝜕𝐸𝐸𝑜𝑜2
𝜕𝜕𝑜𝑜𝑜𝑜𝑡𝑡ℎ1

 

  
 
Starting with 𝜕𝜕𝐸𝐸𝑜𝑜1

𝜕𝜕𝑜𝑜𝑜𝑜𝑡𝑡ℎ1
  : 

 
𝜕𝜕𝐸𝐸𝑜𝑜1
𝜕𝜕𝑜𝑜𝑜𝑜𝑡𝑡ℎ1

=
𝜕𝜕𝐸𝐸𝑜𝑜1
𝜕𝜕𝑛𝑛𝑒𝑒𝑡𝑡𝑜𝑜1

∗
𝜕𝜕𝑛𝑛𝑒𝑒𝑡𝑡𝑜𝑜1
𝜕𝜕𝑜𝑜𝑜𝑜𝑡𝑡ℎ1

 

 
We can calculate 𝜕𝜕𝐸𝐸𝑜𝑜1

𝜕𝜕𝑛𝑛𝑛𝑛𝑡𝑡ℎ1
 using values we calculated earlier: 

 
𝜕𝜕𝐸𝐸𝑜𝑜1
𝜕𝜕𝑛𝑛𝑒𝑒𝑡𝑡ℎ1

=
𝜕𝜕𝐸𝐸𝑜𝑜1
𝜕𝜕𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜1

∗
𝜕𝜕𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜1
𝜕𝜕𝑛𝑛𝑒𝑒𝑡𝑡ℎ1

=  0.74136507 ∗  0.186815602 =  0.138498562 

 
And  𝜕𝜕𝑛𝑛𝑛𝑛𝑡𝑡𝑜𝑜1

𝜕𝜕𝑜𝑜𝑜𝑜𝑡𝑡ℎ1
  is equal to w5: 

 
𝑛𝑛𝑒𝑒𝑡𝑡𝑜𝑜1 = (𝑤𝑤5 ∗ 𝑜𝑜𝑜𝑜𝑡𝑡ℎ1) + (𝑤𝑤6 ∗ 𝑜𝑜𝑜𝑜𝑡𝑡ℎ2) + (𝑏𝑏2 ∗ 1) 

 
𝜕𝜕𝑛𝑛𝑒𝑒𝑡𝑡𝑜𝑜1
𝜕𝜕𝑜𝑜𝑜𝑜𝑡𝑡ℎ1

= 𝑤𝑤5 = 0.40 

 Plugging them in: 
 

𝜕𝜕𝐸𝐸𝑜𝑜1
𝜕𝜕𝑜𝑜𝑜𝑜𝑡𝑡ℎ1

=
𝜕𝜕𝐸𝐸𝑜𝑜1
𝜕𝜕𝑛𝑛𝑒𝑒𝑡𝑡𝑜𝑜1

∗
𝜕𝜕𝑛𝑛𝑒𝑒𝑡𝑡𝑜𝑜1
𝜕𝜕𝑜𝑜𝑜𝑜𝑡𝑡ℎ1

= 0.138498562 ∗  0.40 =  0.055399425 

 
Following the same process for 𝜕𝜕𝐸𝐸𝑜𝑜2

𝜕𝜕𝑜𝑜𝑜𝑜𝑡𝑡ℎ1
 , we get: 

 

 
𝜕𝜕𝐸𝐸𝑜𝑜2
𝜕𝜕𝑜𝑜𝑜𝑜𝑡𝑡ℎ1

=  −0.019049119 

 
Therefore: 
 

𝜕𝜕𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡
𝜕𝜕𝑜𝑜𝑜𝑜𝑡𝑡ℎ1

=
𝜕𝜕𝐸𝐸𝑜𝑜1
𝜕𝜕𝑜𝑜𝑜𝑜𝑡𝑡ℎ1

+
𝜕𝜕𝐸𝐸𝑜𝑜2
𝜕𝜕𝑜𝑜𝑜𝑜𝑡𝑡ℎ1

= 0.055399425 +  −0.019049119 =  0.036350306 

 
Now that we have 𝜕𝜕𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡

𝜕𝜕𝑜𝑜𝑜𝑜𝑡𝑡ℎ1
 , we need to figure out 𝜕𝜕𝑜𝑜𝑜𝑜𝑡𝑡ℎ1

𝜕𝜕𝑛𝑛𝑛𝑛𝑡𝑡ℎ1
 and 𝜕𝜕𝑛𝑛𝑛𝑛𝑡𝑡ℎ1

𝜕𝜕𝑤𝑤1
 for each weight: 

 

𝑜𝑜𝑜𝑜𝑡𝑡ℎ1 =  
1

1 + 𝑒𝑒�−𝑛𝑛𝑛𝑛𝑡𝑡{ℎ1}�
 

 



𝜕𝜕𝑜𝑜𝑜𝑜𝑡𝑡ℎ1
𝜕𝜕𝑛𝑛𝑒𝑒𝑛𝑛ℎ1

= 𝑜𝑜𝑜𝑜𝑡𝑡ℎ1(1 − 𝑜𝑜𝑜𝑜𝑡𝑡ℎ1) =  0.59326999(1 −  0.59326999 )  =  0.241300709 

 
We calculate the partial derivative of the total net input to h1 with respect to w1 the same 
as we did for the output neuron: 

𝑛𝑛𝑒𝑒𝑡𝑡ℎ1 = (𝑤𝑤1 ∗ 𝑖𝑖1) + (𝑤𝑤2 ∗ 𝑖𝑖2) + (𝑏𝑏1 ∗ 1) 
 

𝜕𝜕𝑛𝑛𝑒𝑒𝑡𝑡ℎ1
𝜕𝜕𝑤𝑤1

= 𝑖𝑖1 = 0.05 

Putting it all together: 
 

𝜕𝜕𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡
𝜕𝜕𝑤𝑤1

=
𝜕𝜕𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡
𝜕𝜕𝑜𝑜𝑜𝑜𝑡𝑡ℎ1

∗
𝜕𝜕𝑜𝑜𝑜𝑜𝑡𝑡ℎ1
𝜕𝜕𝑛𝑛𝑒𝑒𝑡𝑡ℎ1

∗
𝜕𝜕𝑛𝑛𝑒𝑒𝑡𝑡ℎ1
𝜕𝜕𝑤𝑤1

 

 
𝜕𝜕𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡
𝜕𝜕𝑤𝑤1

=  0.036350306 ∗  0.241300709 ∗  0.05 =  0.000438568  

 
We can now update w1: 
 

𝑤𝑤1+ = 𝑤𝑤1 − 𝜂𝜂
𝜕𝜕𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡
𝜕𝜕𝑤𝑤1

= 0.15 −  0.5 ∗  0.000438568 =  0.149780716  

 
 Repeating this for w2, w3, and w4 
 

𝑤𝑤2
+ = 0.19956143 

 
𝑤𝑤3
+ = 0.24975114 

 
𝑤𝑤4+ = 0.29950229 

 
Finally, we’ve updated all of our weights! When we fed forward the 0.05 and 0.1 inputs 
originally, the error on the network was 0.298371109. After this first round of 
backpropagation, the total error is now down to 0.291027924. 
 



 
It might not seem like much, but after repeating this process 1,000 times, for example, 
the error falls to 0.000035125. At this point, when we feed forward 0.05 and 0.1, the two 
output neurons generate 0.01591251 (vs 0.01 target) and 0 0.9840654 (vs 0.99 target). 
 
 

 
---- end of document  ---- 

 
 
 
  


